Although the functionalization of magnetic nanoparticles (MNPs) with biomolecules has been widely explored for various biological applications, achieving efficient bioconjugations with a wide range of biomolecules through a single, universal,… Click to show full abstract
Although the functionalization of magnetic nanoparticles (MNPs) with biomolecules has been widely explored for various biological applications, achieving efficient bioconjugations with a wide range of biomolecules through a single, universal, and versatile platform remains a challenge, which may significantly impact their applications' outcomes. Here, we report a novel MNP platform composed of Au@Fe core/satellite nanoparticles (CSNPs) for versatile and efficient bioconjugations. The engineering of the CSNPs is facilely formed through the self-assembly of ultrasmall gold nanoparticles (AuNPs, 2-3 nm in diameter) around MNPs with a polysiloxane-containing polymer coating. The formation of the hybrid magnetic nanostructure is revealed by absorption spectroscopy, dynamic light scattering (DLS), transmission electron microscopy (TEM), element analysis using atomic absorption spectroscopy, and vibrating sample magnetometer. The versatility of biomolecule loading to the CSNP is revealed through the bioconjugation of a wide range of relevant biomolecules, including streptavidin, antibodies, peptides, and oligonucleotides. Characterizations including DLS, TEM, lateral flow strip assay, fluorescence assay, giant magnetoresistive nanosensor array, high-performance liquid chromatography, and absorption spectrum are performed to further confirm the efficiency of various bioconjugations to the CSNP. In conclusion, this study demonstrates that the CSNP is a novel MNP-based platform that offers versatile and efficient surface functionalization with various biomolecules.
               
Click one of the above tabs to view related content.