LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Electrospun Hybrid Perovskite Fibers-Flexible Networks of One-Dimensional Semiconductors for Light-Harvesting Applications.

Photo by julee_juu from unsplash

Thin-film organic-inorganic hybrid perovskite (MeNH3PbI3) solar cells have displayed remarkably high photoconversion efficiencies, making their net-shaping as flexible device elements desirable for a number of applications. Simulations show greatly enhanced… Click to show full abstract

Thin-film organic-inorganic hybrid perovskite (MeNH3PbI3) solar cells have displayed remarkably high photoconversion efficiencies, making their net-shaping as flexible device elements desirable for a number of applications. Simulations show greatly enhanced light absorption in perovskite fibers in comparison to their thin-film counterparts, which demand the processing of hybrid perovskites in the one-dimensional morphology. We report here on the single-step fabrication of MeNH3PbI3 nanofibers on a customized electrospinning process performed under inert conditions. Our results demonstrate reproducible synthesis of electrospun fiber mats in which the fiber dimensions were tailored by adjusting the polymer (PVP) content. Photoluminescence studies on the perovskite fibers revealed a blue shift of the emission peak possibly due to strain or charge confinement effects. The hybrid perovskite nanofibers offer promising applications in flexible and stretchable optoelectronics.

Keywords: perovskite fibers; electrospun hybrid; one dimensional; fibers flexible; hybrid perovskite

Journal Title: ACS applied materials & interfaces
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.