LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fabrication and Morphological Characterization of High-Efficiency Blade-Coated Perovskite Solar Modules.

Photo from wikipedia

Organo-metal halide perovskite demonstrates a large potential for achieving highly efficient photovoltaic devices. The scaling-up process represents one of the major challenges to exploit this technology at the industrial level.… Click to show full abstract

Organo-metal halide perovskite demonstrates a large potential for achieving highly efficient photovoltaic devices. The scaling-up process represents one of the major challenges to exploit this technology at the industrial level. Here, the scaling-up of perovskite solar modules from 5 × 5 to 10 × 10 cm2 substrate area is reported by blade coating both the CH3NH3PbI3 perovskite and spiro-OMeTAD layers. The sequential deposition approach is used in which both lead iodide (PbI2) deposition and the conversion step are optimized by using additives. The PbI2 solution is modified by adding methylammonium iodide (MAI) which improves perovskite crystallinity and pore filling of the mesoporous TiO2 scaffold. Optimization of the conversion step is achieved by adding a small concentration of water into the MAI-based solution, producing large cubic CH3NH3PbI3 grains. The combination of the two modifications leads to a power conversion efficiency of 14.7% on a perovskite solar module with an active area of 47 cm2.

Keywords: solar modules; perovskite solar; fabrication morphological; characterization high; efficiency; morphological characterization

Journal Title: ACS applied materials & interfaces
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.