LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Improved Open-Circuit Voltage and Repeatability of Perovskite Cells Based on Double-Layer Lead Halide Precursors Fabricated by a Vapor-Assisted Method.

Photo by jsrm99 from unsplash

Highly repeatable fabrication of compact perovskite films is crucial for large-area perovskite cells (PSCs) in commercial applications. In this work, a vapor-assisted method with the combination of spin-coating and thermal… Click to show full abstract

Highly repeatable fabrication of compact perovskite films is crucial for large-area perovskite cells (PSCs) in commercial applications. In this work, a vapor-assisted method with the combination of spin-coating and thermal evaporation is employed to fabricate the double-layer PbI2/PbI xBr(2- x) precursor. It is found that surface morphologies of perovskite films could be tailored through tuning the spin-coating speed (the first precursor layer) and chemical compositions (the second precursor layer). The continuous pinhole-free perovskite films are successfully fabricated by double-layer PbI2/PbBr2 precursors. The open-circuit voltages of all the corresponding cells exceed 1.00 V, showing an average value of 1.02 V. The high mean voltage and small variation reveals high repeatability of this method. This work provides a potential method to achieve large-area and high-efficiency PSCs.

Keywords: open circuit; vapor assisted; method; perovskite cells; assisted method; double layer

Journal Title: ACS applied materials & interfaces
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.