LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Bipolymer-Crosslinked Binder to Improve the Reversibility and Kinetics of Sodiation and Desodiation of Antimony for Sodium Ion Batteries.

Photo by seargreyson from unsplash

Although the volume of antimony tremendously expands during the alloying reaction with sodium, it is considered a promising anode material for sodium ion batteries (SIBs). Repeated volume changes along the… Click to show full abstract

Although the volume of antimony tremendously expands during the alloying reaction with sodium, it is considered a promising anode material for sodium ion batteries (SIBs). Repeated volume changes along the sodiation/desodiation cycles encourage capacity fading by triggering pulverization accompanying electrolyte decomposition. Additionally, the low cation transference number of sodium ions is another hindrance for application in SIBs. In this work, a binder was designed for the antimony in SIB cells to ensure bifunctionality and improve (1) the mechanical toughness to suppress the serious volume change and (2) the transference number of sodium ions. A crosslinked composite of poly(acrylic acid) and cyanoethyl pullulan (pullulan-CN) was presented as the binder. The polysaccharide backbone of pullulan-CN was responsible for the mechanical toughness, while the cyanoethyl groups of pullulan-CN improved the lithium cation transfer. The antimony-based SIB cells using the composite binder showed improved cycle life with enhanced kinetics. The capacity was maintained at 76% of the initial value at the 200th cycle of 1C discharge following 1C charge, while the capacity at 20C was 61% of the capacity at 0.2C, implying that the composite binder significantly improved the sodiation/desodiation reversibility of antimony.

Keywords: sodiation desodiation; binder; antimony; sodium

Journal Title: ACS applied materials & interfaces
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.