LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ultralow-Noise Organic Transistors Based on Polymeric Gate Dielectrics with Self-Assembled Modifiers.

Photo from wikipedia

In this study, ultralow 1/f noise organic thin-film transistors (OTFTs) based on parylene gate dielectrics modified with triptycene (Trip) modifiers were fabricated. The fabricated OTFTs showed the lowest 1/f noise… Click to show full abstract

In this study, ultralow 1/f noise organic thin-film transistors (OTFTs) based on parylene gate dielectrics modified with triptycene (Trip) modifiers were fabricated. The fabricated OTFTs showed the lowest 1/f noise level among those of previously reported OTFTs. It is well known that 1/f noise causes degradation of signal integrity in analog and digital circuits. However, conventional OTFTs still possess high 1/f noise levels, and the factors that strongly affect 1/f noise are still ambiguous. In this work, the effect of gate dielectric surface on 1/f noise was investigated. First, by comparing OTFTs composed of various channel lengths, we revealed that contact resistance did not affect 1/f noise. Second, we compared parylene OTFTs with and without a self-assembled Trip modifier layer in terms of 1/f noise and trap density-of-states (Trap DOS). The experiments revealed that a specific Trip modifier layer suppresses the shallow Trap DOS in the OTFTs, leading to a low 1/f noise. Moreover, the 1/f noise level and Trap DOS of various kinds of OTFTs were comprehensively compared, which highlighted that the 1/f noise of OTFTs strongly depends on the gate dielectric surface. Finally, detailed analysis of the gate dielectric interface led us to conclude that the disorder of gate dielectrics and the crystalline quality of semiconductor films are related to shallow Trap DOS, which correlates with 1/f noise.

Keywords: gate dielectrics; noise organic; gate; self assembled; ultralow noise; noise

Journal Title: ACS applied materials & interfaces
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.