LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Inorganic Biomaterials for Regenerative Medicine.

Photo from wikipedia

Regenerative medicine leverages the innate potential of the human body to efficiently repair and regenerate damaged tissues using engineered biomaterials. By designing responsive biomaterials with the appropriate biophysical and biochemical… Click to show full abstract

Regenerative medicine leverages the innate potential of the human body to efficiently repair and regenerate damaged tissues using engineered biomaterials. By designing responsive biomaterials with the appropriate biophysical and biochemical characteristics, cellular response can be modulated to direct tissue healing. Recently, inorganic biomaterials have been shown to regulate cellular responses including cell-cell and cell-matrix interactions. Moreover, ions released from these mineral-based biomaterials play a vital role in defining cell identity, as well as driving tissue-specific functions. The intrinsic properties of inorganic biomaterials, such as the release of bioactive ions (e.g., Ca, Mg, Sr, Si, B, Fe, Cu, Zn, Cr, Co, Mo, Mn, Au, Ag, V, Eu, and La), can be leveraged to induce phenotypic changes in cells or modulate the immune microenvironment to direct tissue healing and regeneration. Biophysical characteristics of biomaterials, such as topography, charge, size, electrostatic interactions, and stiffness can be modulated by addition of inorganic micro- and nanoparticles to polymeric networks have also been shown to play an important role in their biological response. In this Review, we discuss the recent emergence of inorganic biomaterials to harness the innate regenerative potential of the body. Specifically, we will discuss various biophysical or biochemical effects of inorganic-based materials in directing cellular response for regenerative medicine applications.

Keywords: medicine; biomaterials regenerative; response; inorganic biomaterials; cell; regenerative medicine

Journal Title: ACS applied materials & interfaces
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.