Photovoltaic devices based on Cu(In,Ga)Se2 (CIGS) typically employ polycrystalline thin films as the absorber layer. This is because, to date, the highest conversion efficiencies have been attained with polycrystalline CIGS… Click to show full abstract
Photovoltaic devices based on Cu(In,Ga)Se2 (CIGS) typically employ polycrystalline thin films as the absorber layer. This is because, to date, the highest conversion efficiencies have been attained with polycrystalline CIGS films. Recently, Nishinaga et al. presented an epitaxial CIGS thin-film solar cell grown on a GaAs (100) substrate with a conversion efficiency of 20.0%. In this contribution, we study the optical and structural properties of this high-efficiency epitaxial film, along with others with different compositions, using cathodoluminescence spectrum imaging and transmission electron microscopy. A comparison of the high-efficiency epitaxial film and a traditional polycrystalline film with a similar global composition reveals significant differences in microstructure and uniformity of emission properties despite similar performance. The analysis of epitaxial films with higher gallium concentration indicates that the emission characteristics and nature of extended defects in epitaxial CIGS films are highly results presented here provide evidence that with further optimization photovoltaic conversion efficiencies of epitaxial CIGS films could exceed those of polycrystalline CIGS.
               
Click one of the above tabs to view related content.