LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Supramolecular Engineering of Molecular Inhibitors in an Adaptive Cytotoxic Nanoparticle for Synergistic Cancer Therapy.

Photo by thisisengineering from unsplash

Combinatorial regimens that rationally pair molecular inhibitors with standard cytotoxic chemotherapeutics are used to improve therapeutic outcomes. Simultaneously engineering these therapies within a single nanocarrier that spans cytotoxic, antiangiogenic and… Click to show full abstract

Combinatorial regimens that rationally pair molecular inhibitors with standard cytotoxic chemotherapeutics are used to improve therapeutic outcomes. Simultaneously engineering these therapies within a single nanocarrier that spans cytotoxic, antiangiogenic and anti-invasive mechanisms and that enables the delivery of unique drug combinations remains a technical challenge. In this study, we developed a simple and broadly applicable strategy in which ultrastable cytotoxic nanoparticles with an established excellent antitumor efficacy and π-rich inner core structure supramolecularly stabilized the antiangiogenic molecular inhibitor apatinib to create a synergistic drug delivery system (termed sTKI-pSN38). This small-sized nanoparticle accomplished the sequential release of both encapsulated drugs to exert antimetastatic, antivascular and cytotoxic activities simultaneously. In xenograft models of hepatocellular carcinoma, a single intravenous administration of sTKI-pSN38 elicited robust and durable tumor reduction and suppressed metastasis to lymph nodes. Interestingly, sTKI-pSN38 treatment alleviated intratumoral hypoxia, which could contribute to impaired tumor metastasis and reduced drug resistance. Collectively, this nanotherapeutic platform offers a new strategy for cancer therapy by simply engineering a drug cocktail in conventional nanoparticles and by enabling the spatiotemporal modulation of drug release to enhance the synergy of the combined drugs.

Keywords: engineering; nanoparticle; drug; molecular inhibitors; cancer therapy

Journal Title: ACS applied materials & interfaces
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.