LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Bioinspired Self-Healing of Kinetically Inert Hydrogels Mediated by Chemical Nutrient Supply.

Dynamic stability and self-healing ability are two inherently compatible properties for living organisms. By contrast, kinetic stability and intrinsic healability are two desired but mostly incompatible properties for synthetic materials.… Click to show full abstract

Dynamic stability and self-healing ability are two inherently compatible properties for living organisms. By contrast, kinetic stability and intrinsic healability are two desired but mostly incompatible properties for synthetic materials. This is because the healing of these materials heavily relies on the kinetic lability of the chemical bonds or physical interactions in materials. Inspired by the hierarchically and temporally controlled wound healing in biological systems, here, we report the intrinsic healing of kinetically stable hydrogels, regulated by the consumption of chemical nutrients. The acylhydrazone-based polymer hydrogels with preinstalled urease and urea were formed at a low initial pH, followed by in situ enzymatic generation of a base to deactivate the dynamic bonds, allowing efficient fabrication of kinetically stable hydrogels. The healing of damaged hydrogels was effective when fed with proper chemical nutrients (i.e., acidic urea solutions), in which case a transient acidic pH state was temporally programmed by combining a fast acidic activator (for structural healing) with the slow, biocatalytic generation of a base (for property recovery). The ability to regulate both hydrogel fabrication and healing via a single enzymatic reaction could provide a new approach to create kinetically stable materials capable of healing damages on demand.

Keywords: bioinspired self; kinetically stable; inert hydrogels; healing kinetically; kinetically inert; self healing

Journal Title: ACS applied materials & interfaces
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.