LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

In Situ Precipitation of Cluster and Acicular Hydroxyapatite onto the Porous Poly(γ-benzyl-L-glutamate) Microcarriers for Bone Tissue Engineering.

Photo by otto_norin from unsplash

Bone tissue engineering scaffold based on microcarriers provides an effective approach for the repair of irregular bone defects. The implantation of microcarriers by injection can reduce surgical trauma and fill… Click to show full abstract

Bone tissue engineering scaffold based on microcarriers provides an effective approach for the repair of irregular bone defects. The implantation of microcarriers by injection can reduce surgical trauma and fill various irregular shaped bone defects. Microcarriers with porous structure and osteogenic properties have shown great potential in promoting the repair of bone defects. In this study, two kinds of hydroxyapatite/poly-(γ-benzyl-L-glutamate) (HA/PBLG) microcarriers were constructed by emulsion /in situ precipitation method, and their structures and properties were studied. Firstly, PBLG porous microcarriers were prepared by an emulsion method. The surface carboxylation of PBLG microcarriers was performed to promote the deposition of HA on PBLG microcarriers. Next, the modified porous PBLG microcarriers were used as the matrix, combined with in situ precipitation method, the cluster HA and acicular HA were precipitated onto the surface of porous microcarriers in the presence of ammonia water and tri(hyhdroxymethyl) aminomethane (Tris) solution, respectively. The micromorphology, composition, element distribution of the two kinds of microcarriers were characterized by TEM, SEM, and AFM. Adipose stem cells (ADSCs) were cultured on the cluster HA/PBLG and acicular HA/PBLG microcarriers, respectively. The ADSCs could grow and proliferate normally on both two kinds of microcarriers. Wherein the acicular HA/PBLG microcarriers were more favorable for early cell adhesion, and showed a beneficial effect on mineralization and osteogenic differentiation of ADSCs. Successful healing of a rabbit femur defect verified the bone regeneration ability of acicular HA/PBLG microcarriers.

Keywords: bone tissue; pblg; pblg microcarriers; cluster; situ precipitation

Journal Title: ACS applied materials & interfaces
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.