LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

2D Bimetallic Zn/Fe-MOF-Derived Porous Carbon Nanosheets with High Density of Single/Paired Fe Atoms as High-Performance Oxygen Reduction Catalysts.

Photo from wikipedia

Developing efficient non-precious-metal catalysts to accelerate the sluggish oxygen reduction reaction (ORR) is highly desired but remains a great challenge. Herein, using 2D bimetallic Zn/Fe-MOF as the precursor and g-C3N4… Click to show full abstract

Developing efficient non-precious-metal catalysts to accelerate the sluggish oxygen reduction reaction (ORR) is highly desired but remains a great challenge. Herein, using 2D bimetallic Zn/Fe-MOF as the precursor and g-C3N4 as the nitrogen source and stabilizer, porous carbon nanosheets doped with large amounts of single/paired Fe atoms (3.89wt%) and N (10.28wt%) are successfully prepared. It is found that the addition of g-C3N4 plays a key role in achieving high loading of Fe single/paired atoms, and the 2D nanosheet structure gives the materials a high surface area and highly porous structure, resulting in outstanding ORR catalytic activity in both alkaline and acidic solutions. Our optimal sample achieved half-wave potentials in alkaline and acid media of up to 0.86V and 0.79V (vs. RHE), respectively, values 20 mV higher than a commercial Pt/C catalyst in an alkaline medium and only 60 mV lower than Pt/C in an acidic medium. Moreover, its ORR durability was superior to that of commercial Pt/C in both electrolytes. We found that almost all the doped Fe in the sample existed as single or paired atoms coordinated with N. This work may provide an effective strategy for preparing high-performance catalysts bearing single/paired atoms by using MOFs as precursors.

Keywords: paired atoms; carbon nanosheets; bimetallic mof; single paired; porous carbon; oxygen reduction

Journal Title: ACS applied materials & interfaces
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.