LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

In Situ Sol–Gel Synthesis of Unique Silica Structures Using Airborne Assembly: Implications for In-Air Reactive Manufacturing

Photo from wikipedia

Optical trapping enables the real-time manipulation and observation of morphological evolution of individual particles during reaction chemistry. Here, optical trapping was used in combination with Raman spectroscopy to conduct airborne… Click to show full abstract

Optical trapping enables the real-time manipulation and observation of morphological evolution of individual particles during reaction chemistry. Here, optical trapping was used in combination with Raman spectroscopy to conduct airborne assembly and kinetic experiments. Micro-droplets of alkoxysilane were levitated in air prior to undergoing either acid- or base-catalyzed sol–gel reaction chemistry to form silica particles. The evolution of the reaction was monitored in real-time; Raman and Mie spectroscopies confirmed the in situ formation of silica particles from alkoxysilane droplets as the product of successive hydrolysis and condensation reactions, with faster reaction kinetics in acid catalysis. Hydrolysis and condensation were accompanied by a reduction in droplet volume and silica formation. Two airborne particles undergoing solidification could be assembled into unique 3D structures such as dumb-bell shapes by manipulating a controlled collision. Our results provide a pipeline combining spectroscopy with optical microscopy and nanoscale FIB–SEM imaging to enable chemical and structural insights, with the opportunity to apply this methodology to probe structure formation during reactive inkjet printing.

Keywords: spectroscopy; chemistry; airborne assembly; sol gel; situ sol; silica

Journal Title: ACS Applied Nano Materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.