LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Self-Assembled Magnetic Nanoparticle–Graphene Oxide Nanotag for Optomagnetic Detection of DNA

Photo from wikipedia

In this work, a two-dimensional self-assembled magnetic nanoparticle–graphene oxide (MNP-GO) nanocomposite is reported for the detection of DNA. Single-stranded DNA (ssDNA) coils, generated through a rolling circle amplification (RCA) reaction… Click to show full abstract

In this work, a two-dimensional self-assembled magnetic nanoparticle–graphene oxide (MNP-GO) nanocomposite is reported for the detection of DNA. Single-stranded DNA (ssDNA) coils, generated through a rolling circle amplification (RCA) reaction triggered by the hybridization of target oligos and padlock probes, have a strong interaction with MNP-GO nanotags through several mechanisms including π–π stacking, hydrogen bonding, van der Waals, electrostatic, and hydrophobic interactions. This interaction leads to a hydrodynamic size increase or aggregation of MNP-GO nanotags, which can be detected by a simple optomagnetic setup. Due to the high shape anisotropy, MNP-GO nanotags provide stronger optomagnetic signal than individual MNPs. Moreover, the avoidance of DNA probes (i.e., short ssDNA sequences as the biosensing receptor) provides easier material preparation and lower measurement cost. From real-time measurements of interactions between MNP-GO and RCA products amplified from a highly conserved Escherich...

Keywords: magnetic nanoparticle; dna; self assembled; assembled magnetic; graphene oxide; nanoparticle graphene

Journal Title: ACS Applied Nano Materials
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.