In this study, novel hexagonal K2W4O13 (h-K2W4O13) nanowires were strategically synthesized via a facial hydrothermal method, which exhibited excellent adsorption capacities for wastewater treatment. The inorganic agent K2SO4 was used… Click to show full abstract
In this study, novel hexagonal K2W4O13 (h-K2W4O13) nanowires were strategically synthesized via a facial hydrothermal method, which exhibited excellent adsorption capacities for wastewater treatment. The inorganic agent K2SO4 was used as a structure-directing agent to scaffold the tunnel structure of h-K2W4O13 and form the one-dimensional structure. Through increasing the relative molar ratio of K2SO4 to Na2WO4 precursor, the pure-phase h-WO3 nanorods and h-K2W4O13 nanowires were obtained, attributing to the competitive electrostatic adsorption between K+ ions and Na+ ions on h-WO3 nuclei. With a smaller hydrated radius in the solution (dK+ = 3.31 A, dNa+= 3.58 A), K+ exhibited superior affinity compared to Na+ with the negatively charged h-WO3 nuclei because of a larger charge density, resulting in the formation of h-K2W4O13. Adsorption experimental results showed that 89.4% of methylene blue was removed by h-K2W4O13 in the first 5 min (99% in 1 h) and the maximum uptake capacity reached 204.08 mg g–1. I...
               
Click one of the above tabs to view related content.