α-Mannoside β-1,6-N-acetylglucosaminyltransferase V (MGAT5) is a mammalian glycosyltransferase involved in complex N-glycan formation, which strongly drives cancer when overexpressed. Despite intense interest, the catalytic mechanism of MGAT5 is not known… Click to show full abstract
α-Mannoside β-1,6-N-acetylglucosaminyltransferase V (MGAT5) is a mammalian glycosyltransferase involved in complex N-glycan formation, which strongly drives cancer when overexpressed. Despite intense interest, the catalytic mechanism of MGAT5 is not known in detail, precluding therapeutic exploitation. We solved structures of MGAT5 complexed to glycosyl donor and acceptor ligands, revealing an unforeseen role for donor-induced loop rearrangements in controlling acceptor substrate engagement. QM/MM metadynamics simulations of MGAT5 catalysis highlight the key assisting role of Glu297 and reveal considerable conformational distortions imposed upon the glycosyl donor during transfer. Detailed mechanistic characterization of MGAT5 will aid inhibitor development to correct cancer-associated N-glycosylation.
               
Click one of the above tabs to view related content.