LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Site-Selective Modification of (Oligo)Saccharides

Photo from wikipedia

Oligosaccharides, either as such or as part of glycolipids, glycopeptides, or glycoproteins, are ubiquitous in nature and fulfill important roles in the living cell. Also in medicine and to some… Click to show full abstract

Oligosaccharides, either as such or as part of glycolipids, glycopeptides, or glycoproteins, are ubiquitous in nature and fulfill important roles in the living cell. Also in medicine and to some extent in materials, oligosaccharides play an important role. In order to study their function, modifying naturally occurring oligosaccharides, and building in reactive groups and reporter groups in oligosaccharides, are key strategies. The development of oligosaccharides as drugs, or vaccines, requires the introduction of subtle modifications in the structure of oligosaccharides to optimize efficacy and, in the case of antibiotics, circumvent bacterial resistance. Provided the natural oligosaccharide is available, site-selective modification is an attractive approach as total synthesis of the target is often very laborious. Researchers in catalysis areas, such as transition-metal catalysis, enzyme catalysis, organocatalysis, and photoredox catalysis, have made considerable progress in the development of site-selective and late-stage modification methods for mono- and oligosaccharides. It is foreseen that the fields of enzymatic modification of glycans and the chemical modification of (oligo)saccharides will approach and potentially meet each other, but there is a lot to learn and discover before this will be the case.

Keywords: modification; site selective; selective modification; oligo saccharides; modification oligo

Journal Title: ACS Catalysis
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.