LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Multi-Component Fe–Ni Hydroxide Nanocatalyst for Oxygen Evolution and Methanol Oxidation Reactions under Alkaline Conditions

Photo from wikipedia

Iron-incorporated nickel-based materials show promise as catalysts for the oxygen evolution reaction (OER) half-reaction of water electrolysis. Nickel has also exhibited high catalytic activity for methanol oxidation, particularly when in… Click to show full abstract

Iron-incorporated nickel-based materials show promise as catalysts for the oxygen evolution reaction (OER) half-reaction of water electrolysis. Nickel has also exhibited high catalytic activity for methanol oxidation, particularly when in the form of a bimetallic catalyst. In this work, bimetallic iron–nickel nanoparticles were synthesized using a multistep procedure in water under ambient conditions. When compared to monometallic iron and nickel nanoparticles, Fe–Ni nanoparticles show enhanced catalytic activity for both OER and methanol oxidation under alkaline conditions. At 1 mA/cm2, the overpotential for monometallic iron and nickel nanoparticles was 421 and 476 mV, respectively, while the bimetallic Fe–Ni nanoparticles had a greatly reduced overpotential of 256 mV. At 10 mA/cm2, bimetallic Fe–Ni nanoparticles had an overpotential of 311 mV. Spectroscopy characterization suggests that the primary phase of nickel in Fe–Ni nanoparticles is the more disordered alpha phase of nickel hydroxide.

Keywords: nickel; oxygen evolution; methanol oxidation; alkaline conditions; nickel nanoparticles

Journal Title: ACS Catalysis
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.