LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Uncovering the Nature of Active Species of Nickel Phosphide Catalysts in High-Performance Electrochemical Overall Water Splitting

Photo by mischievous_penguins from unsplash

A systematic structural elucidation of the near-surface active species of the two remarkably active nickel phosphides Ni12P5 and Ni2P on the basis of extensive analytical, microscopic, and spectroscopic investigations is… Click to show full abstract

A systematic structural elucidation of the near-surface active species of the two remarkably active nickel phosphides Ni12P5 and Ni2P on the basis of extensive analytical, microscopic, and spectroscopic investigations is reported. The latter can serve as complementary efficient electrocatalysts in the hydrogen (HER) versus oxygen evolution reaction (OER) in alkaline media. In the OER Ni12P5 shows enhanced performance over Ni2P due to the higher concentration of nickel in this phase, which enables the formation of an amorphous NiOOH/Ni(OH)2 shell on a modified multiphase with a disordered phosphide/phosphite core. The situation is completely reversed in the HER, where Ni2P displayed a significant improvement in electrocatalytic activity over Ni12P5 owing to a larger concentration of phosphide/phosphate species in the shell. Moreover, the efficiently combined use of the two nickel phosphide phases deposited on nickel foam in overall electrocatalytic water splitting is demonstrated by a strikingly low cell v...

Keywords: water splitting; uncovering nature; nickel phosphide; performance; active species

Journal Title: ACS Catalysis
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.