In order to maximize the Pt utilization in catalysts and improve catalytic processes, we report a convenient strategy for preparation of Pt3Co with Pt-skin structured bimetallic nanocatalysts directly supported on… Click to show full abstract
In order to maximize the Pt utilization in catalysts and improve catalytic processes, we report a convenient strategy for preparation of Pt3Co with Pt-skin structured bimetallic nanocatalysts directly supported on porous graphitic carbon. Notably, the thickness of the Pt-skin is only 1–2 atomic layers, about 0.5 nm. Surprisingly, the bimetallic nanocatalysts composed of Pt3Co with Pt-skin are first used as ethanol electro-catalysts, with the mass activity of 0.79 mA μgPt–1, which is a 250% enhancement compared with commercial Pt/C (0.32 mA μgPt–1). On the basis of the results of electrochemical in situ Fourier transform infrared spectroscopy (FTIRS) and density functional theory (DFT), a new ethanol electro-oxidation enhancement mechanism is proposed in which Pt3Co with Pt-skin promotes partial oxidation of ethanol over C–C bond cleavage, thereby resulting in higher CH3COOH production than CO2 production.
               
Click one of the above tabs to view related content.