LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Coupling Molecular and Nanoparticle Catalysts on Single Metal–Organic Framework Microcrystals for the Tandem Reaction of H2O2 Generation and Selective Alkene Oxidation

Photo by ktabori from unsplash

A molecular catalyst, (sal)MoVI, and a heterogeneous catalyst, either Pd or Au nanoparticles (NPs), were integrated into one UiO-66 MOF microcrystal. The resulting dually functionalized catalysts, Pd@UiO-66-(sal)Mo and Au/UiO-66-(sal)Mo, have… Click to show full abstract

A molecular catalyst, (sal)MoVI, and a heterogeneous catalyst, either Pd or Au nanoparticles (NPs), were integrated into one UiO-66 MOF microcrystal. The resulting dually functionalized catalysts, Pd@UiO-66-(sal)Mo and Au/UiO-66-(sal)Mo, have been utilized for a one-pot tandem reaction of H2O2 generation and selective liquid-phase alkene oxidation. The NPs serve as catalysts for the production of H2O2 from H2 and O2 gases, while the (sal)Mo moieties function as the oxidation catalyst. When the metal NPs are fully encapsulated within the MOF microcrystals, the alkene hydrogenation side reaction is largely suppressed, with a 6-fold decrease in the hydrogenation/oxidation product ratio for 5-bromo-1-cyclooctene favoring the epoxide as the major product. For Au/UiO-66-(sal)Mo, where the two catalysts are in close proximity on the MOF microcrystal, the enhancement in oxidation productivity is increased by 10 times in comparison to the [Au/UiO-66-NH2 + UiO-66-sal(Mo)] physical mixture of the two singly function...

Keywords: uio sal; oxidation; tandem reaction; reaction; reaction h2o2

Journal Title: ACS Catalysis
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.