LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Mechanistic Study of the Role of Substrate Steric Effects and Aniline Inhibition on the Bis(trineopentylphosphine)palladium(0)-Catalyzed Arylation of Aniline Derivatives

Photo by ornarin from unsplash

The mechanism of the bis(trineopentylphosphine)palladium(0) (Pd(PNp3)2)-catalyzed coupling of aryl halides and aniline derivatives was studied in an effort to understand the role of substrate steric effects on the reaction. Prior… Click to show full abstract

The mechanism of the bis(trineopentylphosphine)palladium(0) (Pd(PNp3)2)-catalyzed coupling of aryl halides and aniline derivatives was studied in an effort to understand the role of substrate steric effects on the reaction. Prior studies had shown that the rate of Pd/PNp3-catalyzed coupling of aryl bromides and aniline derivatives was largely unaffected by substrate steric demand. The oxidative addition of aryl bromides to Pd(PNp3)2 is found to follow first-order kinetics with a rate that is independent of both ligand and aryl halide concentration. Thus, the rate limiting step for oxidative addition of aryl bromides is irreversible ligand dissociation. In the case of aryl chlorides, the oxidative addition rate has a first-order dependence on [ArCl] and an inverse dependence on [PNp3], indicating a mechanism involving reversible dissociation of the ligand followed by rate limiting oxidative addition. This difference in aryl halide effect was also found for the catalytic coupling reaction. Aryl bromide ster...

Keywords: substrate steric; aniline derivatives; bis trineopentylphosphine; rate; aryl

Journal Title: ACS Catalysis
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.