LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Enhanced Lattice Oxygen Reactivity over Ni-Modified WO3-Based Redox Catalysts for Chemical Looping Partial Oxidation of Methane

Photo from wikipedia

Partially oxidizing methane into syngas via a two-step chemical looping scheme is a promising option for methane transformation. Providing the optimum lattice oxygen to selectively produce syngas represents the major… Click to show full abstract

Partially oxidizing methane into syngas via a two-step chemical looping scheme is a promising option for methane transformation. Providing the optimum lattice oxygen to selectively produce syngas represents the major challenge for the development of oxygen carrier materials in chemical looping processes. This paper describes the design of WO3-based oxygen carriers as the primary source of lattice oxygen with high melting points and attractive syngas selectivity. To further enhance the lattice oxygen availability and methane conversion capacity, NiO nanoclusters are introduced, considering the doping effect on chemical bonding disruption in both bulk and surface regions. For Ni0.5WOx/Al2O3, the nickel cations incorporated into the bulk of WO3 can strongly weaken the tungsten–oxygen bond strength and increase the availability of lattice oxygen. The surface-grafted nickel species can effectively activate methane molecules and catalyze the partial oxidation reaction. Total methane conversion and syngas yield ...

Keywords: partial oxidation; oxygen; wo3 based; lattice oxygen; chemical looping; methane

Journal Title: ACS Catalysis
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.