The oxygen evolution reaction (OER) is the limiting step in splitting water into its constituents, hydrogen and oxygen. Hence, research on potential OER catalysts has become the focus of many… Click to show full abstract
The oxygen evolution reaction (OER) is the limiting step in splitting water into its constituents, hydrogen and oxygen. Hence, research on potential OER catalysts has become the focus of many studies. In this work, we investigate capable OER catalysts but focus on catalyst stability, which is, especially in this case, at least equally as important as catalyst activity. We propose a specialized setup for monitoring the corrosion profiles of metal oxide catalysts during a stability testing protocol, which is specifically designed to standardize the investigation of OER catalysts by means of differentiating between catalyst corrosion and deactivation, oxygen evolution efficiency, and catalyst activity. For this purpose, we combined an electrochemical flow cell (EFC) with an oxygen sensor and an inductively coupled plasma–optical emission spectrometry (ICP-OES) system for the simultaneous investigation of catalyst deactivation, activity, and faradaic efficiency of catalysts. We tested various catalysts, with ...
               
Click one of the above tabs to view related content.