LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Simultaneous Improvements in Performance and Durability of an Octahedral PtNix/C Electrocatalyst for Next-Generation Fuel Cells by Continuous, Compressive, and Concave Pt Skin Layers

Photo from wikipedia

Simultaneous improvements in oxygen reduction reaction (ORR) activity and long-term durability of Pt-based cathode catalysts are indispensable for the development of next-generation polymer electrolyte fuel cells but are still a… Click to show full abstract

Simultaneous improvements in oxygen reduction reaction (ORR) activity and long-term durability of Pt-based cathode catalysts are indispensable for the development of next-generation polymer electrolyte fuel cells but are still a major dilemma. We present a robust octahedral core–shell PtNix/C electrocatalyst with high ORR performance (mass activity and surface specific activity 6.8–16.9 and 20.3–24.0 times larger than those of Pt/C, respectively) and durability (negligible loss after 10000 accelerated durability test (ADT) cycles). The key factors of the robust octahedral nanostructure (core–shell Pt73Ni27/C) responsible for the remarkable activity and durability were found to be three continuous Pt skin layers with 2.0–3.6% compressive strain, concave facet arrangements (concave defects and high coordination), a symmetric Pt/Ni distribution, and a Pt67Ni33 intermetallic core, as found by STEM-EDS, in situ XAFS, XPS, etc. The robust core–shell Pt73Ni27/C was produced by the partial release of the stress, ...

Keywords: fuel cells; skin layers; simultaneous improvements; durability; next generation; ptnix electrocatalyst

Journal Title: ACS Catalysis
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.