Formic acid is considered a promising energy storage medium, and its selective dehydrogenation enables the generation of high-purity H2. Herein we report a bipyridine-based conjugated microporous polymer (CMP) loaded with… Click to show full abstract
Formic acid is considered a promising energy storage medium, and its selective dehydrogenation enables the generation of high-purity H2. Herein we report a bipyridine-based conjugated microporous polymer (CMP) loaded with [Cp*IrCl2]2 for the base-free aqueous dehydrogenation of formic acid to H2/CO2. This catalyst exhibits high activity and selectivity at temperatures over 130 °C and with formic acid concentrations as high as 10 M. Recycling tests demonstrate a low Ir leaching and a gradual increase in the activity over six runs and a low CO content in the gas phase of about 138 ppm. TOFs of up to 123894 h–1 were obtained using 0.1 wt % Ir loading.
               
Click one of the above tabs to view related content.