LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Light-Driven H2 Evolution and C═C or C═O Bond Hydrogenation by Shewanella oneidensis: A Versatile Strategy for Photocatalysis by Nonphotosynthetic Microorganisms

Photo by refargotohp from unsplash

Photocatalytic chemical synthesis by coupling abiotic photosensitizers to purified enzymes provides an effective way to overcome the low conversion efficiencies of natural photosynthesis while exploiting the high catalytic rates and… Click to show full abstract

Photocatalytic chemical synthesis by coupling abiotic photosensitizers to purified enzymes provides an effective way to overcome the low conversion efficiencies of natural photosynthesis while exploiting the high catalytic rates and selectivity of enzymes as renewable, earth-abundant electrocatalysts. However, the selective synthesis of multiple products requires more versatile approaches and should avoid the time-consuming and costly processes of enzyme purification. Here we demonstrate a cell-based strategy supporting light-driven H2 evolution or the hydrogenation of C═C and C═O bonds in a nonphotosynthetic microorganism. Methylviologen shuttles photoenergized electrons from water-soluble photosensitizers to enzymes that catalyze H2 evolution and the reduction of fumarate, pyruvate, and CO2 in Shewanella oneidensis. The predominant reaction is selected by the experimental conditions, and the results allow rational development of cell-based strategies to harness nature’s intrinsic catalytic diversity for...

Keywords: evolution; hydrogenation; shewanella oneidensis; light driven; strategy; driven evolution

Journal Title: ACS Catalysis
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.