LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ultrathin and vacancy-rich CoAl-layered double hydroxide/graphite oxide catalysts: promotional effect of cobalt vacancies and oxygen vacancies in alcohol oxidation

Photo from wikipedia

Co-containing layered double hydroxides (LDHs) are potential non-noble-metal catalysts for the aerobic oxidation of alcohols. However, the intrinsic activity of bulk LDHs is relatively low. In this work, we fabricated… Click to show full abstract

Co-containing layered double hydroxides (LDHs) are potential non-noble-metal catalysts for the aerobic oxidation of alcohols. However, the intrinsic activity of bulk LDHs is relatively low. In this work, we fabricated ultrathin and vacancy-rich nanosheets by exfoliating bulk CoAl-LDHs, which were then assembled with graphite oxide (GO) to afford a hybrid CoAl-ELDH/GO catalyst. TEM, AFM, and positron annihilation spectrometry indicate that the thickness of the exfoliated LDH platelets is about 3 nm, with a large number of vacancies in the host layers. Fourier transformed XAFS functions show that the Co–O and Co····Co coordination numbers (5.5 and 2.8, respectively) in the hybrid CoAl-ELDH/GO material are significantly lower than the corresponding values in bulk CoAl-LDHs (6.0 and 3.8, respectively). Furthermore, in addition to the oxygen vacancies (VO) and cobalt vacancies (VCo), CoAl-ELDH/GO also contains negatively charged VCo–Co–OHδ− sites and exposed lattice oxygen sites. CoAl-ELDH/GO shows excellent p...

Keywords: layered double; vacancy rich; graphite oxide; ultrathin vacancy; coal eldh; coal

Journal Title: ACS Catalysis
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.