Here we report a study of the effect of heavy isotope labeling on the reaction catalyzed by human purine nucleoside phosphorylase (hPNP) to elucidate the origin of its catalytic effect… Click to show full abstract
Here we report a study of the effect of heavy isotope labeling on the reaction catalyzed by human purine nucleoside phosphorylase (hPNP) to elucidate the origin of its catalytic effect and of the enzymatic kinetic isotope effect (EKIE). Using quantum mechanical and molecular mechanical (QM/MM) molecular dynamics (MD) simulations, we study the mechanism of the hPNP enzyme and the dynamic effects by means of the calculation of the recrossing transmission coefficient. A free energy surface (FES), as a function of both a chemical and an environmental coordinate, is obtained to show the role of the environment on the chemical reaction. Analysis of reactive and nonreactive trajectories allows us to study the geometric, dynamic, and electronic changes of the chemical system. Special attention is paid to the electrostatic potential created by the environment on those atoms involved in the chemical reaction. Some amino acid residues and solvent molecules that interact with the chemical system provide a specific co...
               
Click one of the above tabs to view related content.