The long-term durability of the catalyst layers of a low-working temperature fuel cell such as a polymer electrolyte membrane fuel cell (PEMFC) is of significant scientific interest because of their… Click to show full abstract
The long-term durability of the catalyst layers of a low-working temperature fuel cell such as a polymer electrolyte membrane fuel cell (PEMFC) is of significant scientific interest because of their operation criteria and high initial cost. Identification of degradation mechanisms quantitatively during an accelerated stress test (AST) is essential for assessing and improving the durability of such catalyst layers. In this study, we present a quantitative analysis of the degradation mechanisms such as (i) electronic connectivity loss due to carbon support corrosion, (ii) proton connectivity loss due to ionomer/catalyst interface loss, (iii) catalyst loss due to dissolution or detachment, and (iv) physical surface area loss due to particle growth that is responsible for the electrochemical surface area (ECSA) loss in Pt-based catalyst layers for PEMFCs during an AST performed through potential cycling (linear sweep cyclic voltammetry) between 0.4 and 1.6 V for 7000 cycles in Ar-saturated 1 M H2SO4. Using a ...
               
Click one of the above tabs to view related content.