LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Immobilization of a Molybdenum Complex on Bipyridine-Based Periodic Mesoporous Organosilica and Its Catalytic Activity for Epoxidation of Olefins

Photo by anniespratt from unsplash

The dichlorodioxomolybdenum(VI) complex (MoO2Cl2) is an efficient and low-cost homogeneous catalyst for a variety of organic reactions, but its activity usually decreases after immobilization on a solid support. This report… Click to show full abstract

The dichlorodioxomolybdenum(VI) complex (MoO2Cl2) is an efficient and low-cost homogeneous catalyst for a variety of organic reactions, but its activity usually decreases after immobilization on a solid support. This report describes the synthesis of heterogeneous Mo complex catalysts using a bipyridine-periodic mesoporous organosilica (BPy-PMO) as a solid chelating ligand and MoO2Cl2 as a precursor, and their catalysis in the epoxidation of olefins with tert-butyl hydroperoxide (TBHP). The MoO2Cl(OH) complex could be immobilized on trimethylsilylated BPy-PMO (BPy-PMO-TMS), which was confirmed by Fourier-transform infrared spectroscopy, Raman spectroscopy, and X-ray absorption fine-structure analysis. The Mo complex immobilized on BPy-PMO-TMS exhibited greater catalytic activity for the epoxidation of cis-cyclooctene compared with conventional heterogeneous Mo complex catalysts using mesoporous silica, polystyrene, and naked BPy-PMO as supports. A large amount (up to 0.72 mmol g–1) of the Mo complex could...

Keywords: bpy pmo; epoxidation; periodic mesoporous; spectroscopy; activity

Journal Title: ACS Catalysis
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.