ADH-A from Rhodococcus ruber DSM 44541 catalyzes the oxidation of (S)-1-phenylethanol 3000-fold more efficiently as compared with the 2-hydroxylated derivative (R)-phenylethane-1,2-diol. The enzyme is also highly selective for sec-alcohols with… Click to show full abstract
ADH-A from Rhodococcus ruber DSM 44541 catalyzes the oxidation of (S)-1-phenylethanol 3000-fold more efficiently as compared with the 2-hydroxylated derivative (R)-phenylethane-1,2-diol. The enzyme is also highly selective for sec-alcohols with comparably low activities with the corresponding primary alcohols. When challenged with a substrate containing two secondary alcohols, such as 1-phenylpropane-(1R,2S)-diol, ADH-A favors the oxidation of the benzylic carbon of this alcohol. The catalytic efficiency, however, is modest in comparison to the activity with (S)-1-phenylethanol. To investigate the structural requirements for improved oxidation of vicinal diols, we conducted iterative saturation mutagenesis combined with activity screening. A first-generation variant, B1 (Y54G, L119Y) displays a 2-fold higher kcat value with 1-phenylpropane-(1R,2S)-diol and a shift in the cooperative behavior in alcohol binding, from negative in the wild type, to positive in B1, suggesting a shift from a less active enzyme...
               
Click one of the above tabs to view related content.