Chemoselective iron-catalyzed dehydrogenative cross-coupling using 2-acylimidazoles is described. The addition of a phosphine oxide ligand substantially facilitated the generation of tert-butoxy radicals from di-tert-butyl peroxide, allowing for efficient benzylic C–H… Click to show full abstract
Chemoselective iron-catalyzed dehydrogenative cross-coupling using 2-acylimidazoles is described. The addition of a phosphine oxide ligand substantially facilitated the generation of tert-butoxy radicals from di-tert-butyl peroxide, allowing for efficient benzylic C–H bond cleavage under mild conditions. Extensive mechanistic studies revealed that the enolization of 2-acylimidazole proceeded through dual iron catalyst activation, followed by subsequent chemoselective cross-coupling with a benzyl radical over an undesired benzyl radical-derived homocoupling dimer that inevitably formed in earlier reported conditions. A variety of alkylarenes, aliphatic alkane, and functionalized 2-acylimidazoles were applicable, demonstrating the synthetic utility of the present catalysis. Contiguous all-carbon quaternary carbons were constructed through dehydrogenative cross-coupling. The catalytic chemoselective activation of 2-acylimidazole over bidentate coordinative and much more acidic malonate diester was particular...
               
Click one of the above tabs to view related content.