OleT, a recently discovered member of the CYP152 family of cytochrome P450s, catalyzes a unique decarboxylation reaction, converting free fatty acids into 1-olefins and carbon dioxide using H2O2 as an… Click to show full abstract
OleT, a recently discovered member of the CYP152 family of cytochrome P450s, catalyzes a unique decarboxylation reaction, converting free fatty acids into 1-olefins and carbon dioxide using H2O2 as an oxidant. The C–C cleavage reaction proceeds through hydrogen atom abstraction by an iron(IV)-oxo intermediate known as Compound I. The capacity of the enzyme for generating important commodity chemicals and liquid biofuels has inspired a flurry of investigations seeking to maximize its biosynthetic potential. One common approach has sought to address the limitations imposed by the H2O2 cosubstrate, particularly for in vivo applications. Numerous reports have shown relatively efficient decarboxylation activity with various combinations of the enzyme with pyridine nucleotides, biological redox donors, and dioxygen, implicating a mechanism whereby OleT can generate Compound I via a canonical P450 O2 dependent reaction scheme. Here, we have applied transient kinetics, cryoradiolysis, and steady state turnover st...
               
Click one of the above tabs to view related content.