LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Enhanced Direct Electron Transfer of Fructose Dehydrogenase Rationally Immobilized on a 2-Aminoanthracene Diazonium Cation Grafted Single-Walled Carbon Nanotube Based Electrode

Photo from wikipedia

In this paper, an efficient direct electron transfer (DET) reaction was achieved between fructose dehydrogenase (FDH) and a glassy-carbon electrode (GCE) upon which anthracene-modified single-walled carbon nanotubes were deposited. The… Click to show full abstract

In this paper, an efficient direct electron transfer (DET) reaction was achieved between fructose dehydrogenase (FDH) and a glassy-carbon electrode (GCE) upon which anthracene-modified single-walled carbon nanotubes were deposited. The SWCNTs were activated in situ with a diazonium salt synthesized through the reaction of 2-aminoanthracene with NaNO2 in acidic media (0.5 M HCl) for 5 min at 0 °C. After the in situ reaction, the 2-aminoanthracene diazonium salt was electrodeposited by running cyclic voltammograms from +1000 to −1000 mV. The anthracene-SWCNT-modified GCE was further incubated in an FDH solution, allowing enzyme adsorption. Cyclic voltammograms of the FDH-modified electrode revealed two couples of redox waves possibly ascribed to the heme c1 and heme c3 of the cytochrome domain. In the presence of 10 mM fructose two catalytic waves could clearly be seen and were correlated with two heme cs (heme c1 and c2), with a maximum current density of 485 ± 21 μA cm–2 at 0.4 V at a sweep rate of 10 mV ...

Keywords: direct electron; diazonium; carbon; electron transfer; fructose dehydrogenase; aminoanthracene

Journal Title: ACS Catalysis
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.