LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Particle Size Effects of Cobalt Carbide for Fischer–Tropsch to Olefins

Photo from wikipedia

Particle size effects of the cobalt carbide (Co2C) catalyst on its catalytic performance for Fischer–Tropsch to olefins were investigated. When the Co2C nanoparticles were smaller than 7 nm, increasing the… Click to show full abstract

Particle size effects of the cobalt carbide (Co2C) catalyst on its catalytic performance for Fischer–Tropsch to olefins were investigated. When the Co2C nanoparticles were smaller than 7 nm, increasing the particle size led to enhanced intrinsic activity based on the turnover frequency (TOF), higher selectivity to lower olefins, higher ratio of olefin to paraffin, and lower methane selectivity. However, when the Co2C nanoparticles were larger than 7 nm, both intrinsic activity and product selectivity did not depend on the particle size. Further kinetic studies showed that both the apparent activation energy and the reaction order of H2 decreased, while the reaction order of CO increased with decreasing Co2C particle size when the size was smaller than 7 nm. In contrast, these kinetic parameters were nearly constant when the Co2C particle size was larger than 7 nm. Theoretical analysis revealed a strong correlation between the exposed facets and Co2C particle sizes, leading to the observed dependence of ca...

Keywords: particle size; size effects; cobalt carbide; size; effects cobalt

Journal Title: ACS Catalysis
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.