LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

One-Step Solvothermal Formation of Pt Nanoparticles Decorated Pt2+-Doped α-Fe2O3 Nanoplates with Enhanced Photocatalytic O2 Evolution

Photo by a2eorigins from unsplash

The photooxidation of water into O2 has been identified as the barrier of water-splitting, and light-driven water oxidation catalysts have been intensively explored to develop highly active water splitting materials.… Click to show full abstract

The photooxidation of water into O2 has been identified as the barrier of water-splitting, and light-driven water oxidation catalysts have been intensively explored to develop highly active water splitting materials. Despite the fascinating advantages for photocatalytic water oxidation, such as abundance in nature, inexpensiveness, low toxicity, thermo/photostability, and suitable electronic band structures, hematite α-Fe2O3 is a poor photocatalyst for water oxidation due to its short exciton lifetime and hole diffusion length, weak carrier mobility, and shallow sunlight penetration depth. In this work, we have synthesized Pt nanoparticles decorated Pt2+-doped α-Fe2O3 nanoplates (Pt/Pt-Fe2O3 NPs) by a one-step solvothermal route which exhibit the enhanced photoactivity and photostability for water oxidation. The introduction of the Pt into the α-Fe2O3 by the means of elemental doping and nanoparticle decoration accounts for the enhanced performance. The doping of Pt2+ into α-Fe2O3 improves the isolation e...

Keywords: doped fe2o3; water; nanoparticles decorated; water oxidation; decorated pt2; pt2 doped

Journal Title: ACS Catalysis
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.