The present report uncovers the borderline between homogeneous and heterogeneous water oxidation catalysis using a family of Ni complexes containing oxamidate anionic type of ligands. In particular, the Ni complex… Click to show full abstract
The present report uncovers the borderline between homogeneous and heterogeneous water oxidation catalysis using a family of Ni complexes containing oxamidate anionic type of ligands. In particular, the Ni complex [(L1)NiII]2– (12–; L1 = o-phenylenebis(oxamidate)) and its modified analogues [(L2)NiII]2– (22–; L2 = 4,5-dimethyl-1,2-phenylenebis(oxamidate)) and [(L3)NiII]2– (32–; L3 = 4-methoxy-1,2-phenylenebis(oxamidate)) have been prepared and evaluated as molecular water oxidation catalysts at basic pH. Their redox features have been analyzed by means of electrochemical measurements revealing a crucial involvement of the ligand in the electron transfer processes. Moreover, the stability of those complexes has been assessed both in solution and immobilized on graphene-based electrodes at different potentials and pHs. The degradation of the molecular species generates a NiOx (Niquel oxides of general formula NixOyHz) layer, whose stability and activity as water oxidation catalyst have also been established...
               
Click one of the above tabs to view related content.