LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Dearomatization and Functionalization of Terpyridine Ligands Leading to Unprecedented Zwitterionic Meisenheimer Aluminum Complexes and Their Use in Catalytic Hydroboration

This paper reports the first example of dearomatization of ubiquitous terpyridine (tpy) ligands via 2′/6′-, 3′/5′-, or 4′-selective alkylation of the central pyridine ring. The reaction is mediated by the… Click to show full abstract

This paper reports the first example of dearomatization of ubiquitous terpyridine (tpy) ligands via 2′/6′-, 3′/5′-, or 4′-selective alkylation of the central pyridine ring. The reaction is mediated by the most abundant metal in the Earth’s crust, aluminum (Al), and depending on the conditions employed, exhibits ionic or radical character as suggested by experimental and computational analysis. In the latter case, intermediate formation of an AlIII complex supported by π-radical monoanionic ligand (tpy•)1– is apparent. The 3′/5′-alkylation leads to unprecedented zwitterionic Meisenheimer AlIII complexes, which were identified as efficient precatalysts for the selective hydroboration of C═O and C≡C functionalities. Turnover numbers (TONs) up to ∼1000 place the corresponding complexes in the category of the most efficient Al catalysts reported to date for the title reaction. The acquired data suggest that aluminum monohydrides, or more likely dihydrides, could be relevant catalytic species. Alternatively, on...

Keywords: terpyridine; unprecedented zwitterionic; zwitterionic meisenheimer; dearomatization; aluminum

Journal Title: ACS Catalysis
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.