LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Potential-Dependent Selectivity of Ethanol Complete Oxidation on Rh Electrode in Alkaline Media: A Synergistic Study of Electrochemical ATR-SEIRAS and IRAS

Photo from wikipedia

Rh-based catalysts might resolve the long-standing problem of poor C1 pathway efficiency toward an ethanol oxidation reaction (EOR). To facilitate the rational design and preparation of Rh-based EOR catalysts, here… Click to show full abstract

Rh-based catalysts might resolve the long-standing problem of poor C1 pathway efficiency toward an ethanol oxidation reaction (EOR). To facilitate the rational design and preparation of Rh-based EOR catalysts, here we fundamentally study ethanol adsorptive dissociation and oxidation on an Rh electrode surface by electrochemical infrared absorption spectroscopy. First, real-time infrared spectral results show that ethanol could be easily split on an Rh surface into COad and CHx intermediates only in alkaline media but not in acidic media. Second, the onset oxidation potential of EOR on Rh is ca. 180 mV more negative than that on Pd and Pt electrode in alkaline media. The EOR Jf /Jb ratio is ca. 5.73, 1.62, and 0.35 on Rh, Pt, and Pd, respectively, suggesting that COad and/or CHx intermediates could be readily oxidized into CO2 on Rh. Accordingly, the apparent selectivity efficiency of the C1 pathway (η) is estimated to be 100% when the potential is at 0.4–0.6 V vs RHE, subsequently η sharply decreases to z...

Keywords: oxidation; oxidation electrode; electrode alkaline; selectivity; alkaline media

Journal Title: ACS Catalysis
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.