LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Accurate Evaluation of Active-Site Density (SD) and Turnover Frequency (TOF) of PGM-Free Metal–Nitrogen-Doped Carbon (MNC) Electrocatalysts using CO Cryo Adsorption

Photo from wikipedia

The number of catalytically active sites (site density, SD) and the catalytic turnover frequency (TOF) are critical for meaningful comparisons between catalytic materials and their rational improvement. SD and TOF… Click to show full abstract

The number of catalytically active sites (site density, SD) and the catalytic turnover frequency (TOF) are critical for meaningful comparisons between catalytic materials and their rational improvement. SD and TOF numbers have remained elusive for PGM-free, metal/nitrogen-doped porous carbon electrocatalysts (MNC), in particular, FeNC materials that are now intensively investigated and widely utilized to catalyze the oxygen reduction reaction (ORR) in fuel cell cathodes. Here, we apply CO cryo sorption and desorption to evaluate SD and TOF numbers of a state-of-art FeNC ORR electrocatalyst with atomically dispersed coordinative FeNx (x ≤ 4) sites in acid and alkaline conditions. More specifically, we study the impact of thermal pretreatment conditions prior to assessing the number of sorption-active FeNx sites. We show that the pretreatment temperature sensitively affects the CO sorption uptake through a progressive thermal removal of airborne adsorbates, which, in turn, controls the resulting catalytic S...

Keywords: free metal; site density; pgm free; tof; turnover frequency; frequency tof

Journal Title: ACS Catalysis
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.