LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Cobalt-Catalyzed Alkylation of Drug-Like Molecules and Pharmaceuticals Using Heterocyclic Phosphonium Salts.

Photo from wikipedia

Alkylated pyridines are common in pharmaceuticals, and metal catalysis is frequently used to prepare this motif via Csp2-Csp3 coupling processes. We present a cobalt-catalyzed coupling reaction between pyridine phosphonium salts… Click to show full abstract

Alkylated pyridines are common in pharmaceuticals, and metal catalysis is frequently used to prepare this motif via Csp2-Csp3 coupling processes. We present a cobalt-catalyzed coupling reaction between pyridine phosphonium salts and alkylzinc reagents that can be applied to complex drug-like fragments and for late-stage functionalization of pharmaceuticals. The reaction generally proceeds at room temperature, and 4-position pyridine C-H bonds are the precursors in this strategy. Given the challenges in selectively installing (pseudo)halides in complex pyridines, this two-step process enables sets of molecules to be alkylated that would be challenging using traditional cross-coupling methods.

Keywords: cobalt catalyzed; catalyzed alkylation; phosphonium salts; drug like

Journal Title: ACS catalysis
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.