LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Engineering Chemoselectivity in Hemoprotein-Catalyzed Indole Amidation.

Photo by daniloalvesd from unsplash

Here we report a cytochrome P450 variant that catalyzes C2-amidation of 1-methylindoles with tosyl azide via nitrene transfer. Before evolutionary optimization the enzyme exhibited two undesired side reactivities resulting in… Click to show full abstract

Here we report a cytochrome P450 variant that catalyzes C2-amidation of 1-methylindoles with tosyl azide via nitrene transfer. Before evolutionary optimization the enzyme exhibited two undesired side reactivities resulting in reduction of the putative iron-nitrenoid intermediate or cycloaddition between the two substrates to form triazole products. We speculated that triazole formation was a promiscuous cycloaddition activity of the P450 heme domain, while sulfonamide formation likely arose from surplus electron transfer from the reductase domain. Directed evolution involving mutagenesis of both the heme and reductase domains delivered an enzyme providing the desired indole amidation products with up to 8400 turnovers, 90% yield, and a shift in chemoselectivity from 2:19:1 to 110:12:1 in favor of nitrene transfer over reduction or triazole formation. This work expands the substrate scope of hemoprotein nitrene transferases to heterocycles and highlights the adaptability of the P450 scaffold to solve challenging chemoselectivity problems in non-natural enzymatic catalysis.

Keywords: chemoselectivity; chemoselectivity hemoprotein; indole amidation; engineering chemoselectivity; amidation; hemoprotein catalyzed

Journal Title: ACS catalysis
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.