Iminosugar scaffolds are highly sought-after pharmaceutical targets, but their chemical synthesis is lengthy and can suffer from poor scalability and purification. Here we report protecting-group-free chemoenzymatic and biocatalytic cascades to… Click to show full abstract
Iminosugar scaffolds are highly sought-after pharmaceutical targets, but their chemical synthesis is lengthy and can suffer from poor scalability and purification. Here we report protecting-group-free chemoenzymatic and biocatalytic cascades to synthesize iminosugars from sugar-derived aminopolyols in two steps. Using galactose oxidase variant F2 followed by a chemical or enzymatic reduction provided an efficient one-pot route to these targets, with product formation >70%. Key to success of this strategy was the application of genome mining, which identified bacterial shikimate dehydrogenases as promiscuous iminosugar reductases. The cell-free protocols allowed for isolation of highly polar iminosugar products from biotransformations in a single step through development of a gradient-elution cation exchange purification. The two-step pathway provides a short synthetic route that can be used as a cell-free platform for broader iminosugar synthesis.
               
Click one of the above tabs to view related content.