LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Stabilization of Ruthenium(II) Polypyridyl Chromophores on Mesoporous TiO2 Electrodes: Surface Reductive Electropolymerization and Silane Chemistry

Photo by shapelined from unsplash

Stabilization is a critical issue in the long term operation of dye-sensitized photoelectrosynthesis cells (DSPECs) for water splitting or CO2 reduction. The cells require a stable binding of the robust… Click to show full abstract

Stabilization is a critical issue in the long term operation of dye-sensitized photoelectrosynthesis cells (DSPECs) for water splitting or CO2 reduction. The cells require a stable binding of the robust molecular chromophores, catalysts, and chromophore/catalyst assemblies on metal oxide semiconductor electrodes under the corresponding (photoelectro)chemical conditions. Here, an efficient stabilization strategy is presented based on functionalization of FTO|nanoTiO2 (mesoporous, nanostructured TiO2 deposited on fluorine-doped tin oxide (FTO) glass) electrodes with a vinylsilane followed by surface reductive electropolymerization of a vinyl-derivatized Ru(II) polypyridyl chromophore. The surface electropolymerization was dominated by a grafting-through mechanism, and rapidly completed within minutes. Chromophore surface coverages were controlled up to three equivalent monolayers by the number of electropolymerization cycles. The silane immobilization and cross-linked polymer network produced highly (photo)stabilized chromophore-grafted FTO|nanoTiO2 electrodes. The electrodes showed significant improvements over structures based on atomic layer deposition and polymer dip-coating stabilization methods in a wide pH range from pH ≈ 1 to pH ≈ 12.5 under both dark and light conditions. Under illumination, with hydroquinone added as a sacrificial electron transfer donor, a photoresponse for sustained electron transfer mediation occurred for at least ∼20 h in a pH ≈ 7.5 phosphate buffer (0.1 M NaH2PO4/Na2HPO4, with 0.5 M NaClO4). The overall procedure provides an efficient way to fabricate highly stabilized molecular assemblies on electrode surfaces with potential applications for DSPECs in solar fuels.

Keywords: surface reductive; polypyridyl; stabilization; chemistry; reductive electropolymerization

Journal Title: ACS Central Science
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.