Stabilization is a critical issue in the long term operation of dye-sensitized photoelectrosynthesis cells (DSPECs) for water splitting or CO2 reduction. The cells require a stable binding of the robust… Click to show full abstract
Stabilization is a critical issue in the long term operation of dye-sensitized photoelectrosynthesis cells (DSPECs) for water splitting or CO2 reduction. The cells require a stable binding of the robust molecular chromophores, catalysts, and chromophore/catalyst assemblies on metal oxide semiconductor electrodes under the corresponding (photoelectro)chemical conditions. Here, an efficient stabilization strategy is presented based on functionalization of FTO|nanoTiO2 (mesoporous, nanostructured TiO2 deposited on fluorine-doped tin oxide (FTO) glass) electrodes with a vinylsilane followed by surface reductive electropolymerization of a vinyl-derivatized Ru(II) polypyridyl chromophore. The surface electropolymerization was dominated by a grafting-through mechanism, and rapidly completed within minutes. Chromophore surface coverages were controlled up to three equivalent monolayers by the number of electropolymerization cycles. The silane immobilization and cross-linked polymer network produced highly (photo)stabilized chromophore-grafted FTO|nanoTiO2 electrodes. The electrodes showed significant improvements over structures based on atomic layer deposition and polymer dip-coating stabilization methods in a wide pH range from pH ≈ 1 to pH ≈ 12.5 under both dark and light conditions. Under illumination, with hydroquinone added as a sacrificial electron transfer donor, a photoresponse for sustained electron transfer mediation occurred for at least ∼20 h in a pH ≈ 7.5 phosphate buffer (0.1 M NaH2PO4/Na2HPO4, with 0.5 M NaClO4). The overall procedure provides an efficient way to fabricate highly stabilized molecular assemblies on electrode surfaces with potential applications for DSPECs in solar fuels.
               
Click one of the above tabs to view related content.