LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Discovery and Enzymatic Screening of Genome-Mined Microbial Levanases to Produce Second-Generation β-(2,6)-Fructooligosaccharides: Catalytic Properties.

Photo from wikipedia

Evidence suggests that β-(2,6)-levan-type fructooligosaccharides (FOSs) possess higher prebiotic potential and selectivity than their β-(2,1)-inulin-type counterparts. The focus of the present work was to develop an enzymatic approach for the… Click to show full abstract

Evidence suggests that β-(2,6)-levan-type fructooligosaccharides (FOSs) possess higher prebiotic potential and selectivity than their β-(2,1)-inulin-type counterparts. The focus of the present work was to develop an enzymatic approach for the synthesis of levan-type FOSs, employing levanases (EC 3.2.1.65), specifically those performing endo-hydrolysis on levans. To identify new levanases, a selection of candidates was obtained via in silico exploration of the levanase family biodiversity through a sequence-driven approach. A collection of 113 candidates was screened according to their specific activities on low- and high-molecular-weight (MW) levan as well as thermal stability. The most active levanases were able to hydrolyze both types of levan with similar efficiency. This ultimately revealed 10 active, highly evolutionary distant and diverse candidate levanases, which demonstrated preferential hydrolysis of levan over inulin. The end-product profile differed significantly depending on levanase with levanbiose, levantriose, and levantetraose being the major FOSs. Among them, the catalytic properties of 5 selected potential new levanases (LEV9 from Belliella Baltica, LEV36 from Dyadobacter fermentans, LEV37 from Capnocytophaga ochracea, LEV79 from Vibrio natriegens, LEV91 from Paenarthrobacter aurescens) were characterized, especially in terms of pH and temperature profiles, thermal stability, and kinetic parameters. The identification of these novel levanases is expected to contribute to the production of levan-type FOSs with properties surpassing those of commercial preparations.

Keywords: catalytic properties; discovery enzymatic; enzymatic screening; type; levan type

Journal Title: ACS chemical biology
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.