LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Amide Modifications in the Seed Region of the Guide Strand Improve the On-Target Specificity of Short Interfering RNA.

Photo from wikipedia

RNA interference (RNAi) is a well-established research tool and is also maturing as a novel therapeutic approach. For the latter, microRNA-like off-target activity of short interfering RNAs (siRNAs) remains as… Click to show full abstract

RNA interference (RNAi) is a well-established research tool and is also maturing as a novel therapeutic approach. For the latter, microRNA-like off-target activity of short interfering RNAs (siRNAs) remains as one of the main problems limiting RNAi drug development. In this communication, we report that replacement of a single internucleoside phosphodiester in the seed region (nucleotides 2 to 7) of the guide strand with an amide linkage suppressed the undesired microRNA-like off-target activity by at least an order of magnitude. For the specific siRNA targeting the PIK3CB gene, an amide modification between the third and fourth nucleotides of the guide strand showed the strongest enhancement of specificity (completely eliminated off-target silencing) while maintaining high on-target activity. These results are important because off-target activity is one of the main remaining roadblocks for RNA based drug development.

Keywords: short interfering; guide strand; seed; target activity; target

Journal Title: ACS chemical biology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.