LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Snapshots of the Catalytic Cycle of an O2, Pyridoxal Phosphate-Dependent Hydroxylase.

Photo from wikipedia

Enzymes that catalyze hydroxylation of unactivated carbons normally contain heme and nonheme iron cofactors. By contrast, how a pyridoxal phosphate (PLP)-dependent enzyme could catalyze such a hydroxylation was unknown. Here,… Click to show full abstract

Enzymes that catalyze hydroxylation of unactivated carbons normally contain heme and nonheme iron cofactors. By contrast, how a pyridoxal phosphate (PLP)-dependent enzyme could catalyze such a hydroxylation was unknown. Here, we investigate RohP, a PLP-dependent enzyme that converts l-arginine to ( S)-4-hydroxy-2-ketoarginine. We determine that the RohP reaction consumes oxygen with stoichiometric release of H2O2. To understand this unusual chemistry, we obtain ∼1.5 Å resolution structures that capture intermediates along the catalytic cycle. Our data suggest that RohP carries out a four-electron oxidation and a stereospecific alkene hydration to give the ( S)-configured product. Together with our earlier studies on an O2, PLP-dependent l-arginine oxidase, our work suggests that there is a shared pathway leading to both oxidized and hydroxylated products from l-arginine.

Keywords: snapshots catalytic; plp dependent; pyridoxal phosphate; catalytic cycle

Journal Title: ACS chemical biology
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.