Nicotinic acetylcholine receptors (nAChR) are the archetypal members of the pentameric ligand-gated ion channel (pLGIC) family, an important class of cell signaling proteins. In all members of this family, each… Click to show full abstract
Nicotinic acetylcholine receptors (nAChR) are the archetypal members of the pentameric ligand-gated ion channel (pLGIC) family, an important class of cell signaling proteins. In all members of this family, each of the five subunits has four transmembrane α-helices (M1-M4) with M2 lining the pore and then M1 and M3, with M4 outermost and adjacent to the membrane lipids. M4 has a variety of roles: its interaction with neighboring M1 and M3 helices is important for receptor assembly, it can a transmit information on the lipid content of the membrane to the gating mechanism, and it may form a vital link to the extracellular domain via the Cys-loop. This study examines the role of M4 receptor residues in the α7 nAChR using site-directed mutagenesis and subsequent expression in Xenopus oocytes. The data indicate that many of the residues in M4 play a role in receptor function, as substitution with Ala can modify functional parameters; 11 of 24 mutants showed a small gain of function (<10-fold decrease in EC50), and 1 (D446A) did not respond to the agonist; it was also not expressed at the cell surface. Removal or addition of aromatic residues had small or no effects. These results demonstrate the α7 nAChR M4 has a role in receptor function, and a structural model suggests possible interactions of some of these residues with their neighbors.
               
Click one of the above tabs to view related content.