LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Accommodation of In-Register N-Linked Glycans on Prion Protein Amyloid Cores.

Photo from wikipedia

Although prion protein fibrils can have either parallel-in-register intermolecular β-sheet (PIRIBS) or, probably, β-solenoid architectures, the plausibility of PIRIBS architectures for the usually glycosylated natural prion strains has been questioned… Click to show full abstract

Although prion protein fibrils can have either parallel-in-register intermolecular β-sheet (PIRIBS) or, probably, β-solenoid architectures, the plausibility of PIRIBS architectures for the usually glycosylated natural prion strains has been questioned based the expectation that such glycans would not fit if stacked in-register on each monomer within a fibril. To directly assess this issue, we have added N-linked glycans to a recently reported cryo-electron microscopy-based human prion protein amyloid model with a PIRIBS architecture and performed in silico molecular dynamics studies to determine if the glycans can fit. Our results show that triantennary glycans can be sterically accommodated in-register on both N-linked glycosylation sites of each monomer. Additional simulations with an artificially mutated β-solenoid model confirmed that glycans can be accommodated when aligned with ∼4.8 Å spacing on every rung of a fibril. Altogether, we conclude that steric intermolecular clashes between glycans do not, in themselves, preclude PIRIBS architectures for prions.

Keywords: register linked; linked glycans; register; prion protein; protein amyloid

Journal Title: ACS chemical neuroscience
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.